|
matrix dotproduct numpy
20160122
Matrix multiplication : dot product
a= np.array([[2., -1., 0.],[-3.,6.0,1.0]])
array([[ 2., -1., 0.],
[-3., 6., 1.]])
b= np.array([ [1.0,0.0,-1.0,2],[-4.,3.,1.,0.],[0.,3.,0.,-2.]])
array([[ 1., 0., -1., 2.],
[-4., 3., 1., 0.],
[ 0., 3., 0., -2.]])
np.dot(a,b)
array([[ 6., -3., -3., 4.],
[-27., 21., 9., -8.]])
Dot product of two vectors
Take the first row of above a matrix and the first column of above b matrix:
np.dot( np.array([ 2., -1., 0.]), np.array([ 1.,-4.,0. ]) )
6.0
Normalize a matrix
Normalize the columns: suppose the columns make up the features, and the rows the observations.
Calculate the 'normalizers':
norms=np.linalg.norm(a,axis=0)
print norms
[ 3.60555128 6.08276253 1. ]
Turn a into normalized matrix an:
an = a/norms
print an
[[ 0.5547002 -0.16439899 0. ]
[-0.83205029 0.98639392 1. ]]
| |